Finance for Business

[Type the document subtitle]

Table of Contents

Course work- (Questions \& Answers)

* Question 1-

\qquad
2. Owners' equity \& balance sheet of the Risk Surfing Ltd

Networking Company Capital of Risk Surfing Ltd
Return on Assets
Net Working Capital
(PE of the Company

* Question 2- \qquad
Annual Interest Rate
Accumulate Amount Investment in 1
Molly Monthly Payment into ANZ Investment
* Question 3- \qquad
* Geometric Average Return of the Portfolio

Capital Gain of the Stock
expected return, variance and standard deviation of the portfolio

* Question 4-

\qquad
Current price of the corporate bond
Current price of the ordinary share
. Current value of the preferred share
Current market value \& capital structure of the firm
The weighted average cost of capital

* Question 5- \qquad
Option of equipment on based on Profitability Index
Option of equipment based on discounted pay back method
* Question 6- \qquad
dividend payout ratio of the company
current value of the firm's equity \& per share

Question 1-

a. The key responsibility of the CFO is to maximize the profits Vis a Vis minimizing the risk. The CFO plays a major role in deciding the dividend payout policy and deciding capital structure of the company. The CFO has to assess for various options available to raise funds comparing the cost of capital and expected rate of return.

Following is the three important concepts of corporate finance.

1. Investments \& Capital Budgeting
2. Capital Financing

3. Dividends and Return of Capital

a. Calculation of owner's equity

Owner's equity is net of total assets and total liabilities

Total Assets	
Current Assets	7,920
Net Fixed Assets	17,700
	$\mathbf{2 5 , 6 2 0}$
Total Liabilities	
Current Liabilities	4,580
Long Term Debt	$\mathbf{5 , 8 9 0}$
	$\underline{10,470}$
	$\underline{15,150}$
Owner's Equity	

Risk Surfing Ltd
 Balance Sheet as on
 \qquad

Liabilities	Amount (in \$)	Assets	Amount (in \$)
Equity Capital	15,150	Net Fixed Assets	17,700
Long Term Debt	5,890		
Current Liabilities	4,580	Current Assets	7,920
	25,620		25620

b. Net Working capital of the company: Net Working capital is a difference between current assets and current liabilities. It reflects liquidity of the company to run a business

Current Assets	7,920
Current Liabilities	4,580
Net Working Capital	$\mathbf{3 , 3 4 0}$

c. Return on Asset (ROA): Return on assets is a \% of profit earned by the company using its total assets.

ROA $=$ Net Income/Total Assets

Here net income is not given however return on equity is 30% and we have calculated Shareholder's Equity as above therefore firstly we will calculate Net Income

ROE 30\%
ROE $=$ Net Income/Shareholder's Equity
30\% = Net Income/15150
Net Income $=15150 * 30 \%$
Net Income $=4545$ \$
ROA $=4545 / 25620$
$R O A=17.74 \%$
d. PE of the company: PE ratio stands for price earnings ratio of the company which helps investor to determine market value of shares of the company

PE Ratio = Market Price per share/EPS

No of shares outstanding 2,000
Market price 12
EPS is an earnings per share which is profit divided by no of shares

EPS $=$ Net Profit/No of shares
EPS $=4545 / 2000=2.27 \$$
PE Ratio = Market Price per share/EPS
PE Ratio $=12 / 2.27=5.28 \$$
The shares of Risk Surfing Ltd id overvalued as it has PE of Rs 5.28 as against market price of 12

Question 2

a. Effective annual interest rate (EAR):EAR is the rate of interest which is equivalent to per annum rate when interest is compounded annually, semiannually or half yearly

Effective Annual Rate $=(1+(\text { nominal interest rate } / \text { number of compounding periods }))^{\wedge}$ (number of compounding periods) - 1

	Bank 1	Bank 2
Rate of return	8.50%	8.45%
Compounding Period	Semi Annual	Quarterly
Period	15 Years	15 Years
Nominal Interest Rate	8.50%	8.45%

Molly should choose Bank A as EAR Is 8.86% which is higher than EAR of Bank B
b. Accumulated investment at the end of the 15 year will be amount invested plus effective rate of interest for 15 years
Accumulated investment $=$ Investment* $(1+E A R)^{\wedge}$ period

Investment value	120000
EAR	8.81%
Investment period	15 years
Maturity Value	425855

Accumulated investment at the end of 15 year is $\$ 425855$

c.

Let the required rate of return be r
Principal amount $=\$ 120,000$
Time $=10$ years
Future/accumulated value at the end of $10^{\text {th }}$ year $=\$ 450,000$
Accumulated value $=$ Principal amount * $(1+r)^{\wedge}$ Time
$450,000=120,000 *(1+r)^{\wedge} 10$
$r=14.13 \%$
d. Let the monthly payment be \$C

Future Value (FV) = \$330,000
Rate of return (i) = 7\% per year, compounding monthly or 0.58% per period
Time (n) $=15$ years or 180 periods ($15 * 12$)
$F V=C^{*}\left((1+i)^{\wedge} n-1\right) / i$
$330,000=C *\left((1+0.58 \%)^{\wedge} 180-1\right) / 0.58 \%$
$C=\$ 1,044.76$
e. Let the future value after 15 years be FV

Monthly payment at the beginning of each month (C) $=\$ 1,200$
Rate of return (i) $=7 \%$ per year, compounding monthly or 0.58% per period
Time (n) $=15$ years or 180 periods $(15 * 12)$
$\mathrm{FV}=\mathrm{C}^{*}\left((1+\mathrm{i})^{\wedge} \mathrm{n}-1\right)^{*}(1+\mathrm{i}) / \mathrm{i}$
$\mathrm{FV}=1,200$ * $\left((1+0.58 \%)^{\wedge} 180\right) *(1+0.58 \%) / 0.58 \%$
$F V=\$ 381,233.40$
f.

Future value	0
Payment	-1200
Discount Rate	7%
Time period	15

Compounding	Monthly
Future value	$₹ 3,80,354.76$

The molly will Get Rs. 380354 if she invests Rs 1200 per month @ 7\% compounded monthly

Question 3

a. Geometric average return:Geometric average return can be calculated using the following formula:

Geometric Average Return
$=((1+R 1) \times(1+R 2) \times \ldots \times(1+R n))(1 / n)-1$
Where,
R1, $R 2$ and $R n$ are sub-period returns for period 1, 2 and n, respectively, and
N is the total number of sub-periods for which return is available.

Alternatively, we can also calculate it using the Excel GEOMEAN function.
Market return 1+return
Year 1
Year 2
9.70\%
109.70\%

Year 3
-6.20\%
93.80\%
12.10\%
112.10\%

Year 4
11.50\%
111.50\%

Year 5
13.30\%
113.30\%

Geometric Mean
0.07821

Geometric Average return
7.82\%
b.

Given,
Expected Return 14.60\%
Risk Premium 5.80\%
Risk free rate of return 5.90\%
Inflation Rate 2.7

The Capital Asset Pricing Model (CAPM) is a model that describes the relationship between the expected return and risk of investing in a security.

Expected return of stock $A=14.6 \%$
Risk premium $=5.8 \%$
Risk-free rate of return = 5.9\%

According to CAPM,

```
Expected return = Risk-free rate of return + Beta * Risk premium
14.6% = 5.9% + Beta * 5.8%
Beta = 1.50
    c.
Investment Value 1,200
No of shares purchase 200
Cost per share 6
Market price }7
Dividend paid 2
Per share Total
Sale consideration 75 15,000
Cost of Acquisition 6 1,200
Capital Gain 69
13,800
    d.
\begin{tabular}{lrr} 
& A & B \\
Expected returns & \(12.50 \%\) & \(18.50 \%\) \\
Standard Deviation & \(15 \%\) & \(20 \%\) \\
Correlation of Coefficient & 0.4 & \\
Weightage of stock in portfolio & \(45 \%\) & \(55 \%\) \\
Expected retrun in portfolio & 5.625 & 10.175 \\
\hline Total Expected Return & \(\mathbf{1 5 . 8}\) & \\
\hline \hline
\end{tabular}
```

```
Variance = wA^2 * o'A^2 + wB^2 * o'B^2 + 2 * \rhoA,B * wA * wB * o'A * o'B
```

Variance = wA^2 * o'A^2 + wB^2 * o'B^2 + 2 * \rhoA,B * wA * wB * o'A * o'B
Portfolio Variance =
Portfolio Variance =
2.26%
2.26%
Where:
w_{i} - the weight of the ith asset
$\sigma_{i}{ }^{2}$ - the variance of the ith asset
$\rho A, B$ - the covariance between assets 1 and 2
Standard deviation is the square root of variance
Standard deviation for above 15.03\%

```

\section*{Question 4:}
a. Current price of corporate bond:
\begin{tabular}{|l|c|}
\hline Par Value of the bond & 1000 \\
\hline Coupon Rate & \(12 \%\) \\
\hline Coupon (12\% of 1000) & 120 \\
\hline Maturity (Number of Years) & 25 \\
\hline Yield / Interest Rate & \(10 \%\) \\
\hline
\end{tabular}

Price of bond is calculated using the formula given below
Bond Price \(=\Sigma\left(C_{n} /(1+Y T M)^{n}\right)+P /(1+i)^{n}\)
\begin{tabular}{|l|c|}
\hline Bond Price & 1075.8 \\
\hline
\end{tabular}
b. Current price of ordinary shares

\section*{Given,}

Outstanding Shares 65000
Dividend per share 7.5
Annual growth rate of dividend 3\%
Average rate of return \(9 \%\)

Current price of stock = (dividend per share) / (discount rate - growth
rate) 125
c. Current value of preferred share

Given,
Outstanding Shares 40000
Face Value 100
Dividend Rate 14\%
Average rate of return 12\%

V = Value of Preference Share D/i
D = Annual Dividend per Preference Share 14
i = Discount Rate on Preference Shares 12\%
Value of preferred Shares 116.67
d. Current market value and capital structure of the firm

No of Ordinary Shares
Current market price as calculated in b
Equity Share Capital
65,000
125

No of preferred stock
40,000
Face Value 100
Preferred Stock 40,00,000

Bond Value
25,00,000
Face Value
1,000
\begin{tabular}{|c|c|c|}
\hline No of Bonds issued & 2,500 & \\
\hline Bond price as calculated in a & 1,076 & \\
\hline Market Value of Bond & & 26,89,539 \\
\hline Current market value of the firm & & 1,48,14,539 \\
\hline \multicolumn{3}{|l|}{Capital Structure} \\
\hline & Amount & \% \\
\hline Equity & 81,25,000 & 55.56 \\
\hline Preferred & 40,00,000 & 27.35 \\
\hline Debt & 25,00,000 & 17.09 \\
\hline Total & 1,46,25,000 & 100 \\
\hline \multicolumn{3}{|l|}{Total Weights of equity funding is 82.91 \% i.e. total of equity \& preferred} \\
\hline e. Weighted Average cost of Firstly, we need to calcula which is as under:
Price = D/(r-g) & ary equity us & dividend cons \\
\hline Dividend & & \\
\hline Growth rate of dividend & & \\
\hline Required rate of return & & \\
\hline Cost of ordinary shares & & \\
\hline
\end{tabular}
Cost of ordinary shares ..... 125

The weighted average cost of capital (WACC) is a calculation of a firm's cost of capital in which each category of capital is proportionately weighted. All sources of capital, including common stock, preferred stock, bonds

WACC \(=(E / V \times R e)+((D / V \times R d) \times(1-T))+(P / V * R p)\)
Where:
\(D=\) market value of the firm's debt
\(V=\) total value of capital (equity plus debt)
\(\mathrm{E} / \mathrm{V}=\) percentage of capital that is equity
\(D / V=\) percentage of capital that is debt
Re = cost of equity (required rate of return)
T = tax rate
\(P=\) market value of preferred stock
\(R p=\) Cost of preferred stock

Equity
Preferred
Debt
Total
WACC

\section*{Question 5}
a.

Cost
Future Cash Flow
Year 1
Year 2
Year 3
Year 4
Year 5

Rate of Return
\begin{tabular}{lll}
\(81,25,000\) & 55.56 & \(9 \%\) \\
\(40,00,000\) & 27.35 & \(14 \%\) \\
\(25,00,000\) & 17.09 & \(10.00 \%\) \\
\hline \(1,46,25,000\) & 100 &
\end{tabular}
Equipment 1 Equipment 2
1,86,000 1,95,000
86,000 97,000

93,000 84,000
83,000 86,000
75,000 75,000
55,000 63,000
\(8 \% \quad 8 \%\)

Pl is the measure to compare the present value of future cash flow as against the initial investment.
\(\mathrm{PI}>1\), Project is profitable
\(\mathrm{PI}=1, \mathrm{Project}\) is at break-even point
\(\mathrm{Pl}<1\), Project will bring losses

Profitability Index =
Present Value of Future Cash Flow
Initial Investment

The higher the profitability index, the more attractive the investment.
\begin{tabular}{|c|c|c|c|c|}
\hline & Equipment 1 & & Equipment & \\
\hline & Cash Flow & Discounted Cash Flow & Cash Flow & Discounted Cash Flow \\
\hline Cost & 1,86,000 & & 1,95,000 & \\
\hline Future & & & & \\
\hline Year 1 & 86,000 & 79,630 & 97,000 & 89,815 \\
\hline Year 2 & 93,000 & 79,733 & 84,000 & 72,016 \\
\hline Year 3 & 83,000 & 65,888 & 86,000 & 68,270 \\
\hline Year 4 & 75,000 & 55,127 & 75,000 & 55,127 \\
\hline Year 5 & 55,000 & 37,432 & 63,000 & 42,877 \\
\hline & 3,92,000 & 3,17,810 & 4,05,000 & 3,28,105 \\
\hline Rate of & & 8\% & & 8\% \\
\hline
\end{tabular}
\begin{tabular}{lll} 
Profitability Index \(=\) & \multicolumn{2}{l}{ Present Value of Future Cash Flow } \\
Initial Investment & \\
& \(\frac{3,17,810}{1,86,000}\) & \(\frac{3,28,105}{1,95,000}\) \\
Profitability Index \(=\) & 1.71 & 1.68
\end{tabular}

The company should accept equipment 1 as the PI is higher as compared toEquipment2
b. Discounted Payback Period: The discounted payback period is used to evaluate the profitability and timing of cash inflows of a project or investment. In this metric, future cash flows are estimated and adjusted for the time value of money. It is the period of time that a project takes to generate cash flows when the cumulative present value of the cash flows equals the initial investment cost.

\section*{Equipment 1:}
\begin{tabular}{|c|c|c|c|}
\hline Year & Cash flows & Discounted Cash flows & \begin{tabular}{c} 
Cumulative Discounted \\
cash flows
\end{tabular} \\
\hline 0 & \((186,000)\) & \((186,000)\) & \((186,000)\) \\
\hline 1 & 86,000 & 79,630 & \((106,370)\) \\
\hline 2 & 93,000 & 79,733 & \((26,638)\) \\
\hline 3 & 83,000 & 65,888 & \\
\hline 4 & 75,000 & 55,127 & \\
\hline 5 & 55,000 & 37,432 & \\
\hline
\end{tabular}

Discounted payback period \(=2+26,638 / 65,888\)
Discounted payback period \(=2.40\) years

\section*{Equipment 2:}
\begin{tabular}{|c|c|c|c|}
\hline Year & Cash flows & Discounted Cash flows & \begin{tabular}{c} 
Cumulative Discounted \\
cash flows
\end{tabular} \\
\hline 0 & \((195,000)\) & \((195,000)\) & \((195,000)\) \\
\hline 1 & 97,000 & 89,815 & \((105,185)\) \\
\hline 2 & 84,000 & 72,016 & \((33,169)\) \\
\hline 3 & 86,000 & 68,270 & \\
\hline 4 & 75,000 & 55,127 & \\
\hline 5 & 63,000 & 42,877 & \\
\hline
\end{tabular}

Discounted payback period \(=2+33,169 / 68,270\)
Discounted payback period \(=2.48\) years

The company should not accept any of the equipment as company's maximum payback criteria is 2 years and both the above equipment exceed the payback period of 2 years

\section*{Question 6}
a. Ex-dividend date \& Ex dividend price:When a company announce a dividend, the company set a record date for payment. The Ex-dividend date will be set after the record date as per the stock exchange rule

The investor will ready to buy a share before ex-dividend date as he knows that he will be going to earn a dividend he may intend to pay premium also

Usually after the ex-dividend date the price of stock will reduce to the extent of dividend and tax payable thereon and that is known as ex dividend price of shares.

Market Value per share 22
Cash Dividend 4.5
Extra Dividend 1.5
Total Dividend 6
Tax on dividend @ 25\% 1.5
Ex dividend price 14.5

It is assumed that company is liable to pay tax on dividends and therefore that will also be deducted from its share price along with amount of dividend paid
b. Residual Dividend Payout: With a residual dividend policy, the firm's objective is to meet its investment needs and maintain its desired debt-equity ratio before paying dividends. If funds needed by a company is less than the profits earned than balance amount is distributed as dividend ensuring that the desired debt-equity ratio is maintained by the company
\begin{tabular}{lr} 
Capital Requirement & \(\mathbf{7 , 4 5 , 0 0 0}\) \\
Equity Ratio & \(60 \%\) \\
\begin{tabular}{ll} 
Debt Ratio & \(40 \%\) \\
Net Income & \(\mathbf{2 5 , 7 5 , 0 0 0}\) \\
& \\
Using the residual dividend approach dividend will be calculated as under: & \\
Net Income & \(\mathbf{7 , 4 5 , 0 0 0}\) \\
Capital Budget & \(60 \%\) \\
Target Equity Ratio & \\
Dividend Payout & \(\mathbf{2 5 , 7 5 , 0 0 0}\) \\
Dividend Payout Ratio & \(\mathbf{2 1 , 2 8 , 0 0 0}\)
\end{tabular} & \(\mathbf{8 3 \%}\)
\end{tabular}
c.
\begin{tabular}{lrl} 
Rate of Return & \(13.50 \%\) & \\
Dividend paid now & 3.5 & Million \$ \\
Liquidating Dividend & 8.5 & Million \$ \\
Total Dividend & 12 & Million \$ \\
Share outstanding & 2.5 & Million \$ \\
Dividend per share & 4.8 &
\end{tabular}

As the company is going to liquidate the company will pay the balance earnings in the form of dividend to its owners

The company is going to pay total \(12 \$\) million of divided. Therefore, we will get the value of firm's equity by dividing total dividend payment to its required rate of return
\begin{tabular}{lll} 
Value of firms Equity & 88.89 & Million \$ \\
No of shares outstanding & 2.50 & Million \$ \\
Value per share & 35.56 & Million \$
\end{tabular}```

